Download

Abstract

Most work on Knowledge Graph (KG) verbalisation is monolingual leaving open the question of how to scale KG-to-Text generation to languages with varying amounts of resources. In this work, we explore KG-to-Text generation on nine languages including five high-resource (HR) languages (English, Chinese, French, Spanish, Russian) and four low-resource (LR) languages (Breton, Irish, Maltese, Welsh). We first construct silver multilingual training data for all nine languages and new gold out-of-domain test data for the five HR languages. Using this data and already available in-domain test sets for 7 of our 9 languages, we then compare three strategies: (1) NLG+MT—a state-of-the-art KG-to-English model followed by Machine Translation (MT) into the target language; (2) FTMT—multilingual MT models fine-tuned end-to-end on the silver data; and (3) FewShot—few-shot LLM prompting comparing 4 LLMs. We explore different prompting strategies and show that our best prompting strategy performs the best on all 9 languages, discussing the relative performance of the three approaches on Low vs High Resource languages and on in- vs out-of-domain data.


Main Result